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The notion of the redistribution of atoms during deformation of metals  was first put forward by V. S. Gorskii, who 
laid the foundation of the diffusion aftereffect  theory. This notion was developed in S. T. Konobeevskii 's  studies of the 
effect  of nonuniformity of the stress state on diffusion in isothermal processes. A further development  of the theory of 
the effect  of the stress state on the diffusion process in solid solutions may be found in [1, 2[~ The principles of the dif-  
fusion theory of creep of metals  were developed in a number of investigations of B. Ya. Pines [3]. General l inear  differ-  
en t ia l  equations taking into account the interact ion between the processes of diffusion, heat  conduction, and deforma-  
tion are derived from principles of the thermodynamics of irreversible processes in [4Z 

It is necessary to point out, however, that in a l l  the investigations known to us the diffusion processes are related 
only to the gradient  of the first invariant of the stress tensor (average pressure), owing to which in the described solids 
a l l  the laws governed by the i rreversibi l i ty  of the physical  processes are vir tual ly the same as those pertaining to fluids. 
In part icular ,  the diffusion processes only condition the re laxat ion of the average pressure, whereas the stress deviator 

remains the rmodynamica l ly  stable. 

This may  be at tr ibuted,  in part icular ,  to the fact that the physical  state of a solid, l ike that of a liquid, is charac-  
ter ized by a scalar  - the mass density. At the same t ime,  the resistance of solids to shear stresses in the state of me-  
chanica l  equi l ibr ium c lear ly  distinguishes them from liquids, in which shear stresses, in conformity with existing mod-  
els, can arise only as a result of mechan ica l  motion. Therefore, in the general  case of deformation of solids the dis- 
tr ibution of mass may  be nonisotropic. Hence i t  follows that the physical  state of a solid should be character ized not by 

the scalar  density p but by a cer ta in  tensor quanti ty P. 

On the basis of these considerations a system of different ial  equations and boundary Conditions for determining the 
state of a cer tain theore t ica l  mode l  of me ta l  bodies ( treated as solid isotropic solutions) is derived below by the methods 
of the mechanics  of continua and the thermodynamics  of irreversible processes [5, 6]. It is shown that the known theo-  
l o g i c a l  relationships between stress and strain tensors and their  veloci t ies ,  derived from the general  principles of the 
thermodynamics  of irreversible processes without introducing any model  concepts,  follow from the proposed diffusion 
theory a s a par t icular  case ,  provided that the i r revers ibi l i ty  of the processes is determined only by the presence of fluxes 
through the surface of the body and the i rreversibi l i ty  associated with fluxes inside the body is disregarded. 

i. Density tensor, Startin ~ equations 

Henceforth we will  t reat  a solid as a continuum fi l l ing a part or the whole of the space in which the rectangular  

Cartesian coordinate  system xlx2xs is established. 

Let us examine  in the in i t ia l  state two inf ini te ly  close small  part icles  of a medium whose centers of mass are lo-  
ca ted at  points M and M 1. Assuming in the in i t ia l  state M M  1 = dl0, we construct with this segment as edge a substantive 
cube with volume dV0 = (dl0) 3 containing mass dm, and define the density P0 and specif ic  volume v0 at point M, as 

usual by the relat ions 

Po = drn / dVo, v o = d V  o / d m  . (1. 1) 

Designating by 1 the unit vector  in direct ion MM 1, we will  ca l l  the quanti ty dV/ = (dl)S/3,  where dl is the dis-  

tance  between the considered two par t ic les  of the medium in any state, the e l emen ta ry  volume at  point M i n  direct ion 

1. 

The density Pl and specif ic  volume v l of  the body at point M in di rect ion 1 we define as 

Pz = d m  / dV~, ~'z = dVz / din .  (1. 2) 

By virtue of these definitions we obtain 

0z = Oo (118~i~ - e~j) cos ( l ,  x~) ~os (i, xj) 
vl = po -~ (~/88~j + e~j) cos (l, xd  cos (l, x~) 

(i. 3) 
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Here the components eij of  the small strain tensor are related t o t h e  components u i of the displacement vector by 

e 0 -~- 1/2 (Viaj  -+- Vflti) .  (1.4) 

It follows from (1, 2)-(1. 4) that in the case under consideration the density and the specific volume of the body at 
a point are characterized by symmetric tensors of the second rank p and v, whose components are 

Pij = Po (1/3fii~ - -  eij), vii = ~)o-lVi] ( F i t  = 1/3 ~ij "~ %),  (1. 5) 

where 5ij is the Kronecker delta. 

We will call tensors p and v, respectively, the density tensor and the specific volume tensor of the body at point 
M. The quantities 

p = lO~ct, V = V ~  = p o - l V ~  ( 1 . 6 )  

are the average volume density and average specific volume of the body at point M. Note that the tensor Vii was intro- 
duced in [2] from other considerations. 

We will define the mass flux J as a tensor of the third rank obtained by dyadic multiplication of the velocity vector 
w and the density tensor 

In this case we have the following equation of conservation of mass 

dp / dr, + p div  w = 0 (r - t ime) .  (1. 7) 

As a result of contraction of (1. 7), in conformity with (1.6), we obtain 

d p / d * +  p d i v w = 0 .  (1.8) 

For solutions, from the equations of conservation for each of the components we can easily obtain 

d c k /  d~ + d i v  J~ = 0 ( k = i  . . . .  n) ( % = P k / P ,  J ~ = ( w k - - w ) P D -  (1. 9) 

Here Pk is the density tensor, w the center-of-mass velocity, and w k the velocity of component k. Along with 
(1. 9), we will also use two other equations of the mechanics of continua, namely,  the equation of motion and the 
equation of conservation of energy 

dw du ;deij 
div a p ~ - ,  p ~ - -  - -  d i v  J + z i j  ~ �9 (1. 10) 

Here u is the internal energy of unit mass, J the heat flux vector, o the stress tensor with components oij. 

2. Internal ener6y. Equations of state 

The change in the internal energy of unit mass of a fluid mixture is given by the Gibbs equation [6]: 

du = Tds  - -  p dv  + t~ dck.  (2.1) 

Here T is the temperature, s the entropy of unit mass, p the pressure, v the average specific volume, Pk the chem- 
ical potential, and c k the concentration of component k. 

If we are dealing with a solid, then in place of (2.1) we must write 

du = Tds  + a~dv~j + ~h/k)dc~/k). (2. 2) 

In particular, for a two-component  solution, taking into consideration (1. 5), (L 6), we obtain 

du = Tds  + p0-1crijde~j + Ixiflco . (2. 3) 

Here Pij are the components of the chemical  potential tensor, and cij the components of the solute concentration 

tensor. 

With Eqs. (I. 9), (!. I0), and (2. 3) it is no longer difficult, using the theory developed in [7, 81 to obtain all the 
necessary relationships for determining the state of the body at any instant of time and at any point for small deviations 
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from the state of equilibrium. 

By virtue of (2. 3), for the free energy f of unit mass of an isotropic solution we can write 

Po ( / - - / o )  ---- - -  ~lecT-lt~-~ K e . ~ t  q- ~la (~I~ ~c~. - [ -  (2. 4) 

Tca~ ~ - -  b c ~ t )  -b l/u~eaaa + Gea~ ~ - -  k '  eaaca~ - ~  2G 'e~c ,~  . 

Here f0 is the value of the free energy in the initial state; t, cij the changes in temperature and the components of 
the concentration tensor relative to the initial state; c the heat capacity; r the coefficient of temperature deformation; 
):, G' quantities associated with the coefficients of concentration deformation; ~r G the elastic Lam~ constants; and 
K the bulk modulus; $, T, b are defined as the first derivatives of the components of the chemical potential tensor with 
respect to the components of the concentration tensor and the temperature for constant deformation. Of course, the val- 
ues of the material characteristics introduced depend on the nature of the thermodynamic process. 

The following equations of state may be derived from (2. 4): 

po s ----- cTv~t + V~bca~ + uKe=~,  (2. 5) 

(rij = ~ e ~ 8 ~  q- 2Ge~j ~ (iVc~:8~i + 2G'cij) - -  a K t S ~ ,  (2.6) 

Po~J = 1/ + 2Tcij - -  btS~j) - -  ()~'e~r ~ 2G'eis)': (2. 7) 

3. Entropy. Phenomenological relations 
, _ , , . 

To set up the entropy balance equation we will use equations (1. 9), (1. l l L  and (2.3). Eliminating u and cij, after 
some obvious transformations, we obtain 

ds 
p ~ - ~ d i v J ~  = ~  

(3. 1) 

�9 T ~ s = J a X a - [ -  Ja~'tXa~'t ' X i = - ~ V i T  , Xi j  k : - : - T V  i -  . 

Here Js is the entropy flux vector, Xi, Xij k the components of the thermodynamic forces, and X7 i the operator of 
differentiation with respect to x i. 

In the case of small thermodynamic fluxes, disregarding heat of transfer, for an isotropic body we can write 

~, = 1 /2L~X~  q- L , X ~ X ~  q- L 2 X 2 ~ .  (3. 2) 

Here the phenomenological relations are of the form 

J i  ~ LqXt ,  J~jk = L 1 X t ~ 8 ~ k  ~- 2L2X~j~ �9 (3.3) 

Substituting into (3.3) the expressions for the thermodynamic forces from (3.1) and tai(iag into account (2.7), we 
easily obtain relations expressing thermodynamic fluxes in terms of the variables t, el j, cij. After linerization these 
relations have the form 

J i  ~ ~*Vi t, Jij~ ~ poD ( k V i c ~  - -  bVit  - -  3 K ' V i e ~ )  6~k + 3k- 
poD* q -  ~ [(TV~c~,~ - -  3G 'Vr  8~ - -  3TV~ci~ + 9G'V~ei~] (3. 4) 

(K'--__k'-~ z/aa', k - ~ - { - ' ~ l s ~ )  . 

Here D, D* are diffusion coefficients. 

Clearly, the diffusion flux is related not only with the gradient of volume expansion (average pressure) but also 
with the gradients of each of the components of the strain tensor (stress tensor) individually, as was also pointed out in 

monograph [3]. 

Contracting the second equality of (3.4) with respect to the indices j, k, we find 

J ~  = - -  'O-~-~ k ( k V i c ~  - -  b V d  " 3 K ' V i e ~ ) .  (3.5) 

4 .  S),st~m of. differential equations. Boundarff conditions 

We will write the required system of differential equations in displacements. 
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Substituting into the equation of motion (1.10) the expressions for the stresses from (2. 6) and using (1.4), after 
linearization we obtain 

GAu q- (~ ~- G) grad div u -~ 
O~u ~, 

= p00-- ~ q- grad c ~  -k 2G' div c + aKgrad t 

The equation of conservation (1. 9) and relations (1. 7), (3.4) give 

D* 1) (kAc~ ~ bat - -  3K' div hu) 6i~-- - ~  [(TAc~ ~ 3G' div Au) 6~j 
3k 

- -  3 7 A c ~ j  + -~ - -  0~ �9 

(4. 1) 

(4. 2) 

Finally, from the equation of conservation of energy, relations (2. 3), (2. 5), and the first equality of (3. 3), we 

have 

Ot b 0c~a ceK O 
•  r- 3c 0~ -k-g-  d i v u ,  (4. s) 

where u is the thermal diffusivity. 

Thus, for determining ten functions of u i, cij = cji, t we have the system of linear differential equations (4. I)- 

(4. 3). 

To ensure the uniqueness of the solution of this system, additional (initial and boundary) conditions are needed. 

In the theory of heat  conduction the heat  flux through the boundary of a body is frequently subjected to Newton's 

condition 

J a  cos (n, x~) - -  h (t - -  tc) --= 0 .  (4. 4) 

Here n is the exterior normal to the boundary surface, h the heat transfer coefficient, and t c the temperature of 

the external medium. 

In a number of cases an analogous condition can be assumed with respect to the  mass flux 

J:~) cos  (n, x,,} - -  1/3p~ / k [It: ( ~ =  ~ ~ : c )  6~ i -k 2H2 (Ihi - -  ~hj~)l = 0 .  (4. 5) 

Here H~, H z are mass transfer coefficients, Pc the chemical  potential tensor of the solute in the ambient medium. 

The boundary conditions applying to the mechanical  variables and the initial conditions can be formulated as usuaI 
in the linear mechanics of continua and the theory of diffusion and heat conduction. 

5. Diffusion theory of deformation and theology 

Some of the equations of  the diffusion theory of deformation derived above follow from the basic principles of the 
thermodynamics of irreversible processes. On the other hand, many theological relations linking the components of 
stress tensors and strain tensors and thei~ velocities also follow, as has now been established, from the same principles 
of thermodynamics. It is natural, therefore, to consider the question of the relation between the differential equations 

of the diffusion theory of  anelasticity and the aforementioned theological relations. 

To simplify the calculations, let us take the case of isothermal processes, since taking finite heat conductivity in- 

to account does not introduce any additional effects. 

Let us examine gq. (1. 9), from which Eq. (4. 2) was obtained by means of phenomenological  relations (3. 4). In- 

tegrating (1 .9)  over the volume V occupied by the body and bounded by surface r., we find 

- - !  d iv]  dV -= s pe" (5.1) 

where the dot means a substantive derivative. 

Transforming the volume integral on the left side of (5. 1) into a surface integral and taking into consideration 

boundary conditions (4.5), we have 

- I  o' + 2M. =3k Io ,;dv. 
2~ V 
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We now assume that the thermodynamic states of the body and of the ambient medium are each individually 
homogeneous. Then, in place of (5. 2) we obtain 

kd . 
H 1 ~ 6 ~  j + 2 H , ~  i + 3 ~- ~0 = H f l ~ r  + 2H*~qie 

where d is the average dimension of the region accupied by the body. 

Eliminating the quantity cij from (2. 6), (2. 7), and (5. 3) and using the general thermodynamic relations, for the 
spherical part of the corresponding tensors we find 

pKcKa' c 
a , ~  -~ na==" = 3K~e=~, + 3nK=e=~, '~ 3 k ~  I~== �9 (5. 4) 

Here Kp and K c are values of the bulk modulus for constant Paa and c a m ,  

K~ = Kc ka d k~ 2 -~e ' n - - H a  e ' H H l ~ Y H 2 , (5. 5) 

k o, k e are values of the coefficient k for constant o a a  and eac  o and, finally, X~, G~ are values of the coefficients 
X' and G' for constaht oaa .  

Analogous dependences are also obtained between the components of the deviatoric parts of the stress and strain 
tensors and their derivatives: 

aija --[- m (a~ja)" = 2G~eij a ~- 2mGc (eij~)" - -  2pGcG~' / 7e, (5.6) 

where Gp and G c are Values of the shear modulus for constant Pij and cij (i ~ j), 

G ~ -  G~ ~'~ 9 d k~ - -  m = . ( 5 .  7 )  
"re ' 4 H~ T e 

Relations (5. 4), (5. 6) are the most general for a theological model characterized by a linear dependence between 
the stresses and strains and their first derivatives. Here the physical sense of the long-time and instantaneous moduli of 
elasticity and the relaxation t ime is established by formulas (5. 5), (5. 7). 

Hence rheological relations (5. 4), (5.6) follow from the equations of the diffusion theory as a particular case pro- 
vided that the thermodynamic states of the body and the ambient medium are individually homogeneous and the irm- 
versibility of the process is attributable only to a discontinuous change in the state of the system upon transition through 
the body-medium interface. Evidently, this is theoretically possible only for infinitely large conductivity of the media 
and a certain finite resistance at the interface. 

The author wishes to thank G. N. Savin for discussing the results. 
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